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Abstract— Today we live in the digital world. With continuous data streaming and increasing digitization the amount of structured and 
unstructured data being generated from various sources – transactions, social media networks, sensors, machines, mobile phones and 
other real time sources. The speed and growth of data has affected all fields, whether it is the business sector or the world of science. A 
large amount of data gives a better output but also working with it can become challenges due to processing frameworks which that one of 
the essential components of real-time data analysis. So, a real-time platform must meet the needs of data scientists, developers and data 
center operations teams without requiring extensive custom code or brittle integration of many third-party components. And the data 
analysis requires scalable, flexible, and high performing tools to provide insights in a timely fashion. This paper presents valuable insights 
into the understanding of the real-time data analysis frameworks and comparison of popular real-time data processing systems. 
Keywords: Big Data, Batch/Stream Processing, Hadoop, Spark, Storm, Samza, Flink. 

——————————   ◆   —————————— 

1 INTRODUCTION                                                                     

eal-time data analytics is the analysis of data as soon as 
that data becomes available. In other words, users get 
insights or can draw conclusions immediately or very 

rapidly after the data enters their system. It’s also known 
as dynamic analysis, real-time analysis, real-time data integra-
tion and real-time intelligence [2], [8], [10], [20] and [25]. 

Real-time analytics allows businesses to react without de-
lay. They can seize opportunities or prevent problems before 
they happen. By comparison, batch-style analytics may take 
hours or even days to yield results. Consequently, batch ana-
lytical applications often yield only “after the fact” insights 
(lagging indicators). Business intelligence (BI) Insights from 
real-time analytics can allow businesses to get ahead of the 
curve [1], [3] and [12]. 

The real-time business intelligence is an approach to data 
analytics that enables business users to get up-to-the-minute 
data by directly accessing operational systems or feeding 
business transactions into a real-time data warehouse and 
business intelligence system. The technologies that can be 
used to enable real-time BI include data virtualization, data 
federation, enterprise information integration (EII), enterprise 
application integration (EAI) and service-oriented architec-
tures (SOA). Complex event processing tools can be used to 
analyze data streams in real time and either trigger automated 
actions or alert workers to patterns and trends [3]. 

Real-time processing of big data mainly focuses on elec-
tricity, energy, smart city, intelligent transportation, and intel-
ligent medical fields. During the information processing it 
needs to be able to make quick decisions, and feedback rele-
vant instructions to the sensing terminal input within a very 
short time delay [19], [23] and [25]. 

Analyzing large data sets requires significant compute ca-
pacity that can vary in size based on the amount of input data 
and the type of analysis [16] and [18]. In addition to some sys-
tems handle data in batches only mode, while other systems 
process data in a streaming mode as it flows into the system 
and others can handle data in a combination of tow-a mixed 
processing mode [8], [10] and [25]. 

Processing frameworks and processing engines are re-
sponsible for computing over data in a data system. While 
there is no authoritative definition setting apart "engines" from 
"frameworks", it is sometimes useful to define the former as 
the actual component responsible for operating on data and 
the latter as a set of components designed to do the same. For 
instance, Apache Hadoop can be considered a processing 
framework with MapReduce as its default processing engine. 
Engines and frameworks can often be swapped out or used in 
tandem. For instance, Apache Spark, another framework, can 
hook into Hadoop to replace MapReduce. This interoperabil-
ity between components is one reason that big data systems 
have great flexibility [6], [10], [14] and [15]. 

Therefore, the research of real-time data analysis has a 
great application prospect and research value. Because of the 
real-time analytics of data processing framework is one of the 
essential components of a big data analytics.  

This paper is organized as follows: Section 2 in this paper, 
examines the related work of real-time data analytics. In sec-
tion 3, the real-time data analytics systems are discussed. In 
addition, other real-time data analysis tools are summarized in 
section 4. In section 5, comparison of popular real-time data 
processing systems. Finally, conclusion and directions for fu-
ture work are reported in section 6. 

2 RELATED WORK 

Recent years, many experts and scholars have made a lot of 
research on real-time analytics [3], [4], [5] and [10].  

Especially on real-time streaming data processing [9], 
[11], [16], [17] and [22], in addition to many scholars’ re-
search on real-time big data processing is in full swing [2], [7], 

[8], [20], and [25].  
Many researchers have made studies on a framework for 

real-time data processing [2], [5], [10], [13], [14], [17], [21] and 
[25].  
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In [9], Gürcan and Berigel, provided a valuable insight on 
real-time processing of big data streams, with its lifecycle, 
tools and tasks and challenges. This paper initially revealed 
the lifecycle of real-time big data processing, consisting of four 
phases, that are data ingestion, data processing, analytical data 
store, and analysis and reporting. Secondly, it described tools 
and tasks of real-time big data processing. These tools are: 
Flume, Kafka, Nifi, Storm, Spark Streaming, S4, Flink, Samza, 
Hbase, Hive, Cassandra, Splunk, and Sap Hana. Finally, chal-
lenges of real-time big data processing were identified and 
categorized. 

In [13], Inoubli, et al., proposed streaming frameworks for 
Big Data applications to store, analyze and process the contin-
uously captured data. Also discussed the challenges of Big 
Data and presented an experimental evaluation and a com-
parative study of the most popular streaming platforms. 

In [14], Inoubli, et al., surveyed popular frameworks for 
large-scale data processing. This paper presented an overview 
of the Big Data frameworks Hadoop, Spark, Storm and Flink. 
Also, presented a categorization of these frameworks accord-
ing to some main features such as the used programming 
model, the type of data sources, the supported programming 
languages and whether the framework allows iterative pro-
cessing or not. Finally, conducted an extensive comparative 
study of the above presented frameworks on a cluster of ma-
chines and highlighted best practices while using the studied 
Big Data frameworks. 

In [17], Khan, et al., proposed a framework for the dynam-
ic visualization of real time streaming big data, resilient to 
both its volume and rate of change. Some of the different di-
rections explored include: (a) the efficient processing and con-
sumption of streaming data; (b) the automated detection of 
relevant changes in the data stream, highlighting entities that 
merit a detailed analysis; (c) the choice of the best idioms to 
visualize big data, possibly leading to the development of new 
visualization idioms; (d) real-time visualization changes. 

In [21], Yadranjiaghdam et al., proposed a framework for 

real-time analysis of Twitter data. This framework is designed to 
collect, filter, and analyze streams of data and gives us an in-
sight to what is popular during a specific time and condition. 
The framework consists of three main steps; data ingestion, 
stream processing, and data visualization components with 
the Apache Kafka messaging system that is used to perform 
data ingestion task. Finally, conducted a case study on tweets 

about the earthquake in Japan and the reactions of people around 
the world with analysis on the time and origin of the tweets. 

In [16], Jayanthi and Sumathi, focused on the challenges 
that real-time stream processing solution addressed using ma-
chine learning. Also, this paper analyzed the traditional ana-
lytic tools to bridge the gap between data being generated and 
data that can be analyzed effectively. 

In [2], Anjos, et al., presented a framework consisting of 
composable data-analysis services that can be combined to 
address needs of specific applications. Also, this paper focused 
on applications for small and medium-sized organizations, the 
framework offered a flexible and lightweight approach that 
allows these organizations to take advantage of Big Data anal-
ysis in the cloud infrastructures. 

In [25], Zheng, et al., built a kind of real-time big data pro-
cessing (RTDP) architecture based on the cloud computing 
technology and then proposed the four layers of the architec-
ture, and hierarchical computing model. Also, proposed a 
multi-level storage model and the LMA-based application 
deployment method to meet the real-time and heterogeneity 
requirements of RTDP system. Then used DSMS, CEP, batch-
based MapReduce and other processing mode and FPGA, 
GPU, CPU, ASIC technologies differently to processing the 
data at the terminal of data collection. Finally, structured the 
data and upload to the cloud server and MapReduce the data 
combined with the powerful computing capabilities cloud 
architecture. 

3 REAL-TIME DATA ANALYTICS SYSTEMS 

In this section, the real-time data analysis systems presented in 
a table of comparison as shown in Table 1. As shown in Table 
1, the comparison analysis of the frameworks, tools and tasks, 
Issues, challenges and solutions, advantages and limitations 
involve three domains, which are batch, stream and Hybrid 
processing systems. In this respect, a total of 21 related works 
have been analyzed, in which eight related works were identi-
fied within the domain of batch processing systems and an-
other seven in the stream processing systems domain. Howev-
er, six works were found in the Hybrid processing systems 
domain. On the other side, this finding indicates eleven relat-
ed works interested in the frameworks and tasks for real-time 
analytics and seven related works in challenges and solutions. 
finally, three related works in advantages and limitations. 

TABLE 1 
REAL-TIME DATA ANAYTICS SYSTEMS 

 

Aspects Batch-Only Processing Systems Stream-Only Processing Systems Hybrid Processing Systems Total 

Frameworks, Tools, 

and Tasks 

In [8], Dugane & Raut, 2014. In [13], Inoubli, et al., 2018. In [14], Inoubli, et al., 2018. 

11 

In [4], Bifet, 2013. In [17], Khan, et al., 2017. 

In [2], Khan, et al., 2015. 
In [24], Zhang, et al., 2010. In [21], Yadranjiaghdam, et al., 

2017. 
In [20], Babak, et al., 2017. In [3], Azvine, 2006. In [16], Jayanthi & Sumathi, 2016. 
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Issues, Challenges, 

and Solutions 

In [7], Brock & Khan, 2017. 
In [11], Hiraman, et al., 2018. In [25], Zheng, et al., 2015. 

7 In [12], Gandhi & Sreedhar, 2015. 

In [9], Gürcan & Berigel, 2018. In [23], Yuan, et al., 2012. 
In [15], Jaseena, et al., 2014. 

Advantages and 

Limitations 
In [1], Anjos, et al., 2018. In [22], Yang, et al., 2013. In [10], Gurusamy, et al., 2017. 3 

Total 8 7 6 21 

3.1 Batch Processing Systems 

Batch processing is the processing of vast amounts of data sets 

that is collected over a period of time and return the result at a 

later time when the computation is completed. The dataset 

easily consists of millions of records for a day and can be 

stored in a variety of ways (file, record, etc.). An example of a 

batch processing job is all of the transactions a financial firm 

might submit over the course of a week. It can also be used in 

payroll processes, line item invoices, and supply chain and 

fulfillment. 

Batch data processing is an extremely efficient way to pro-

cess large volume of data all at once. It also helps to reduce the 

operational costs that businesses might spend on labor as it 

doesn’t require specialized data entry clerks to support its 

functioning. It can be used offline and gives managers com-

plete control as to when to start the processing, whether it be 

overnight or at the end of a week or pay period. 

3.1.1 Apache Hadoop 

Apache Hadoop is a collection of open-source software for 

reliable, scalable, distributed computing that facilitate using a 

network of many computers to solve problems involving mas-

sive amounts of data and computation.  

Apache Hadoop is a processing framework that exclusive-

ly provides batch processing. It can be used for the distributed 

storage and processing of large data sets across clusters of 

computers using simple programming models. Batch pro-

cessing works well in situations where you don’t need real-

time analytics results, and when it is more important to pro-

cess large volumes of data to get more detailed insights than it 

is to get fast analytics results. The base Apache Hadoop 

framework is composed of the following modules: 

1. Hadoop Common – contains libraries and utilities 

needed by other Hadoop modules. 

2. Hadoop Distributed File System (HDFS) – a distrib-

uted file system that stores data on commodity ma-

chines, providing very high aggregate bandwidth 

across the cluster nodes.  

3. Hadoop Yet Another Resource Negotiator (YARN) – 

a platform responsible for managing computing re-

sources in clusters and using them for scheduling us-

ers' applications. 

4. Hadoop MapReduce – an implementation of the 

MapReduce programming model for large-scale data 

processing. MapReduce is Hadoop's native batch pro-

cessing engine. It’s the best framework for processing 

data in batches.  

Batch Processing Model: 

The processing functionality of Hadoop comes from the 

MapReduce engine. MapReduce's processing technique fol-

lows the map, shuffle and reduce algorithm using key-value 

pairs. 

The basic procedure involves: 

➢ Reading the dataset from the HDFS file system. 

➢ Dividing the dataset into chunks and distributed among 

the available nodes. 

➢ Applying the computation on each node to the subset of 

data (the intermediate results are written back to HDFS). 

➢ Redistributing the intermediate results to group by key. 

➢ "Reducing" the value of each key by summarizing and 

combining the results calculated by the individual nodes. 

➢ Write the calculated final results back to HDFS. 

 
Figure 1. The Framework of the MapReduce Model [24] 

3.2 Stream Processing Systems 

Stream processing is computing over data and produce the 

results strictly within certain time constrains as data enter the 

system and quickly detect conditions within a small time peri-

od from the time of receiving the data. The detection time pe-

riod may vary from a few milliseconds to minutes. This re-

quires a different processing model than the batch processing 

paradigm. Stream processing is also known as real-time ana-

lytics, streaming analytics, complex event processing, real-

time streaming analytics, and event processing. Stream pro-

cessing is a good fit for data where you must respond to 

changes or spikes and where you’re interested in trends over 

time. 
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3.2.1 Apache Storm 

Apache storm is a free and open-source distributed real-time 

computational system for processing data streams. Storm fo-

cuses on extremely low latency and it can handle very large 

quantities of data with and deliver results with less latency 

than other solutions so it's considered one of the best options 

for workloads that require near real-time processing.  

Storm has many use cases: real-time analytics, online ma-

chine learning, continuous computation, distributed RPC, 

ETL, and more. Storm is fast: a benchmark clocked it at over a 

million tuples processed per second per node. It is scalable, 

fault-tolerant, guarantees your data will be processed, and is 

easy to set up and operate. 

Storm Processing Model: 

Storm integrates with the queueing and database technol-

ogies you already use. Stream processing works by orchestrat-

ing DAGs (Directed Acyclic Graphs) in a framework it calls 

topologies.  A Storm topology consumes streams of data and 

processes those streams in arbitrarily complex ways, reparti-

tioning the streams between each stage of the computation 

however needed. These topologies describe the various trans-

formations or steps that will be taken on each incoming piece 

of data as it enters the system. 

The topologies are composed of:  

➢ Streams: Conventional data streams. This is unbounded 

data that is continuously arriving at the system.  

➢ Spouts: Sources of data streams at the edge of the to-

pology. These can be APIs, queues, etc. that produce da-

ta to be operated on.  

➢ Bolts: Bolts represent a processing step that consumes 

streams, applies an operation to them, and outputs the 

result as a stream. Bolts are connected to each of the 

spouts and then connect to each other to arrange all of 

the necessary processing. At the end of the topology, fi-

nal bolt output may be used as an input for a connected 

system.  

3.2.2 Apache Samza 

Apache Samza is an open-source distributed near-realtime, 

asynchronous computational framework for stream pro-

cessing. It’s based on Apache Kafka and YARN. It provides a 

simple callback-based API that’s similar to MapReduce, and it 

includes snapshot management and fault tolerance in a dura-

ble and scalable way.  

Samza is designed specifically to take advantage of Kaf-

ka's unique architecture and guarantees. It uses Kafka to pro-

vide fault tolerance, buffering, and state storage. Samza uses 

YARN for resource negotiation. This means that by default, a 

Hadoop cluster is required (at least HDFS and YARN), but it 

also means that Samza can rely on the rich features built into 

YARN. 

 

Samza allows you to build stateful applications that pro-

cess data in real-time from multiple sources including Apache 

Kafka. Battle-tested at scale, it supports flexible deployment 

options to run on YARN or as a standalone library. 

 
Figure 2. The Framework of the Apache Samza Model [9] 

Samza Processing Model: 

Samza relies on Kafka's semantics to define the way that 

streams are handled. Kafka uses the following concepts when 

dealing with data: 

➢ Topics: Each stream of data entering a Kafka system 

is called a topic. A topic is basically a stream of related 

information that consumers can subscribe to. 

➢ Partitions: In order to distribute a topic among nodes, 

Kafka divides the incoming messages into partitions. 

The partition divisions are based on a key such that 

each message with the same key is guaranteed to be 

sent to the same partition. Partitions have guaranteed 

to order. 

➢ Brokers: The individual nodes that make up a Kafka 

cluster are called brokers. 

➢ Producer: Any component writing to a Kafka topic is 

called a producer. The producer provides the key that 

is used to partition a topic. 

➢ Consumers: Consumers are any component that 

reads from a Kafka topic. Consumers are responsible 

for maintaining information about their own offset, so 

that they are aware of which records have been pro-

cessed if a failure occurs. 

3.3 Hybrid Processing Systems (Batch and Stream 
Processing) 

There are some processing systems can handle both batch and 

stream frameworks. These frameworks simplify diverse pro-

cessing requirements by allowing the same or related compo-

nents and APIs to be used for both types of data. 

3.3.1 Apache Spark 

Apache Spark is an open-source distributed general-purpose 

cluster-computing framework that is a unified analytics engine 

for large-scale data processing and the next generation batch 

processing framework with stream processing capabilities. 
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Apache Spark achieves high performance for both batch 

processing workloads by offering full in-memory computation 

and processing optimization and streaming data, using a state-

of-the-art DAG scheduler, a query optimizer, and a physical 

execution engine.  

Spark can run as a standalone or on top of Hadoop YARN, 

where it can read data directly from HDFS. In addition to its 

in-memory data processing engine that can do ETL, analytics, 

machine learning and graph processing on large volumes of 

data at rest (batch processing) or in motion (streaming pro-

cessing) with rich concise high-level APIs for the program-

ming languages: Scala, Python, Java, R, and SQL. 

 
Figure 3. The Spark Platform [14] 

3.3.2 Apache Flink 

Apache Flink is an open-source stream-processing framework 

and distributed processing engine for stateful computations 

over unbounded and bounded data streams. Flink has been 

designed to run in all common cluster environments, perform 

computations at in-memory speed and at any scale.  

The core of Apache Flink is a distributed streaming data-

flow engine written in Java, Scala, Python and SQL and are 

automatically compiled and optimized into dataflow pro-

grams that are executed in a cluster or cloud environment. 

Flink provides a high-throughput, low-latency streaming 

engine as well as support for event-time processing and state 

management. Flink applications are fault-tolerant in the event 

of machine failure and support exactly-once semantics. 

Apache Flink is an excellent choice to develop and run 

many different types of applications due to its extensive fea-

tures set. Flink’s features include support for stream and batch 

processing, sophisticated state management, event-time pro-

cessing semantics, and exactly-once consistency guarantees for 

state. Moreover, Flink can be deployed on various resource 

providers such as YARN, Apache Mesos, and Kubernetes but 

also as stand-alone cluster on bare-metal hardware. Config-

ured for high availability, Flink does not have a single point of 

failure. Flink has been proven to scale to thousands of cores 

and terabytes of application state, delivers high throughput 

and low latency, and powers some of the world’s most de-

manding stream processing applications. 

 
Figure 4. The Flink Platform [2] 

4 OTHER REAL-TIME DATA ANALYSIS TOOLS 

4.1. Apache Flume is a distributed, reliable, and available 

software for efficiently collecting log data present in log 

files from web servers, aggregating it in HDFS for analy-

sis, and moving large amounts of log data into HDFS. It 

has a simple and flexible architecture based on streaming 

data flows. It is robust and fault tolerant with tunable reli-

ability mechanisms and many failover and recovery 

mechanisms. It uses a simple extensible data model that 

allows for online analytic application. 

4.2. Apache Kafka is an open-source distributed stream-

processing software platform that is used publish and 

subscribe to streams of records. It is horizontally scalable, 

fault-tolerant, wicked fast, and runs in production in 

thousands of companies. Kafka is designed to allow your 

apps to process records as they occur.  

4.3. Apache S4 is a general-purpose, near real-time, distrib-

uted, decentralized, scalable, event-driven, modular plat-

form that allows programmers to easily implement appli-

cations for processing continuous unbounded streams of 

data. S4 has a decentralized and symmetric architecture 

which all the nodes in a cluster are identical, different to 

the classic master-nodes architecture. S4 employs 

ZooKeeper as the communication layer to coordinate the 

nodes within the cluster. 

4.4. Apache NiFi is an open-source software project from the 

Apache Software Foundation designed to automate the 

flow of data between software systems. It is based on the 

"Niagara Files" software previously developed by the 

NSA. Apache NiFi supports powerful and scalable di-

rected graphs of data routing, transformation, and system 

mediation logic. 

4.5. Apache Hive is a data warehouse software project built 

on top of Apache Hadoop for providing data query and 

analysis. It's facilitates reading, writing, and managing 

large datasets residing in distributed storage using SQL. 

Structure can be projected onto data already in storage. A 

command line tool and JDBC driver are provided to con-

nect users to Hive. 
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4.6. Apache Sqoop is a command-line interface application 

designed for efficiently transferring bulk data between 

Apache Hadoop and structured datastores such as rela-

tional databases. 

4.7. Apache HBase is the Hadoop database, a distributed, 

scalable, big data store. It is used when you need random, 

realtime read/write access to your Big Data. This project's 

goal is the hosting of very large tables -- billions of rows X 

millions of columns -- atop clusters of commodity hard-

ware. HBase is an open-source non-relational distributed 

database modeled after Google's Bigtable and written in 

Java. 

4.8. HStreaming is an analytics platform built on top of Ha-

doop and MapReduce. The architecture of HStreaming 

consists of two components: data acquisition and data an-

alytics. The data acquisition component is able to collect 

data in near real-time, and has ETL capabilities, while the 

analytics component allows to analyze unstructured and 

structured data on HDFS in a real-time fashion. 

4.9. Apache Impala is a modern, open source massively par-

allel processing, distributed SQL query engine for data 

stored in a computer cluster running Apache Hadoop. 

5 COMPARISON OF REAL-TIME DATA PROCESSING 

SYSTEMS 

The frameworks for real-time data analysis presented above 
are compared according to several features (see Table 2) in-
cluding: data format, types of data sources, Architecture, spec-
ified used for RTDP, processing model, programming model, 
supported languages, cluster manager, integration/query, 
Comments, latency, messaging capacities, iterative computa-
tion, interactive mode, auto-parallelization, data partitioning 
and data transport. 

TABLE 2 
COMPARISON OF POPULAR REAL-TIME DATA PROCESSING  

SYSTEMS 

 

Aspects Hadoop Storm Samza Spark Flink 

Data Format Key-value Key-value, Tuples Events, Messages Key-value, RDD 
Key-value,  

Data stream 

Data Sources 
HDFS, YARN and 

MapReduce 

HDFS, HBase and 

Kafka 
Kafka 

HDFS, DBMS and 

Kafka 

Kafka, Kinesis, message 

queus, socket streams 

and files 

Architecture Master/Slaves Peer Peer Master/Slaves Publish/Subscribe 

Specified Used 
Data ingestion,  

Single-event 

Stream & Complex 

event processing 

Event stream 

processing 

Event stream  

processing 

Stream & Complex 

event processing 

Processing Model Batch Stream Stream Batch and Stream Batch and Stream 

Programming Model Map and Reduce Topology Map and Reduce 
Transformation 

and Action 

Transformation, Action 

Functions 

Supported languages Java, Python and R 
Java, Scala, Clojure, 

Python, Ruby and C# 

Java, Scala,  

Python and Ruby 

Java, Scala, Python 

and R 

Java, Scala, Python, 

Ruby, R and Clojure 

Primarily Written in Java Clojure Java, Scala Scala Java, Scala 

Cluster Manager YARN Zookeeper or YARN YARN 
Standalone, YARN 

and Apache Mesos 
Zookeeper 

Integration/Query 

(Streaming query) 
Integration Integration 

Integration and 

Samza-SQL API 

Integration and 

Spark-SQL 
Integration 

Comments 
Store large data in 

HDFS 

Suitable for real time 

App. 

Based on Hadoop 

and Kafka 

Gives several APIs 

to develop  

interactive App. 

Extension of MapRe-

duce with Graph  

methods 

Latency More Seconds Sub-Second Few Seconds Sub-Second Sub-Second 

Messaging Capacities At least once At least once Exactly once Exactly once Exactly once 

Iterative Computation 
Yes (By running multi-

ple Map-Reduce jobs) 
Yes Yes Yes Yes 

Interactive Mode No No No Yes No 

Auto-Parallelization On demand Pipelined Processing On demand On demand Pipelined Processing 

Data Partitioning Yes No Yes Yes No 

Data Transport RPC RPC Kafka RPC RPC 
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6 CONCLUSION 

Real-time data analysis for computing over data and reduce the 

results is undoubtedly a huge challenge. There are many solutions 

to address big data analytic requirements. Most of this solution 

use multiple systems to build a complete solution. Most of the 

frameworks for real-time data analysis use multiple systems to 

build a complete solution. this solution can help to meet the strict 

business requirements in the most cost-optimized, performant, 

and resilient way possible. The result is a flexible, big data archi-

tecture that is able to scale along with your business on the global 

infrastructure. There are many options for real-time data pro-

cessing within a big data system.  

First, for batch-only workloads that are processing large sets 

of data and not time-sensitive, Hadoop is a good choice that is 

great for MapReduce data analysis on huge amounts of data and 

likely less expensive to implement than some other solutions. 

Second, for stream-only workloads, Storm is probably the 

best solution available for real-time processing. It’s able to handle 

data with extremely low latency processing and has wide lan-

guage support. Samza integrates tightly with YARN and Kafka in 

order to provide flexibility, easy multi-team usage, and straight-

forward replication and state management. 

third, for hybrid processing systems, Spark is a good stream 

processing solution for workloads that value throughput over 

latency. It’s provided high-speed batch processing, micro-batch 

processing, wide support, integrated libraries and tooling, and 

flexible integrations. Flink is currently a unique option in the pro-

cessing framework world. It’s provided true stream processing 

with batch processing support, low latency processing, high 

throughput and real entry-by-entry processing but is still in the 

early days of adoption.  

Finally, the best fit for your situation will depend heavily 

upon the state of the data to process, how time-bound your re-

quirements are, and what kind of results you are interested in. 
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