
1059

International Journal of Scientific & Engineering Research, Volume 10, Issue 10, October-2019
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

A Comparative Study on Real Time Data Analysis
Frameworks

O. E. Emam
Information Systems Department,

Faculty of Computers and Artificial Intelligence,

Helwan University, Cairo, Egypt.

A. Abdo
Information Systems Department,

Faculty of Computers and Artificial Intelligence,

Helwan University, Cairo, Egypt.

A. M. Abd-Elwahab
Business Information Systems Department,

Faculty of Commerce and Business Administration,

Helwan University, Cairo, Egypt.

Abstract— Today we live in the digital world. With continuous data streaming and increasing digitization the amount of structured and
unstructured data being generated from various sources – transactions, social media networks, sensors, machines, mobile phones and
other real time sources. The speed and growth of data has affected all fields, whether it is the business sector or the world of science. A
large amount of data gives a better output but also working with it can become challenges due to processing frameworks which that one of
the essential components of real-time data analysis. So, a real-time platform must meet the needs of data scientists, developers and data
center operations teams without requiring extensive custom code or brittle integration of many third-party components. And the data
analysis requires scalable, flexible, and high performing tools to provide insights in a timely fashion. This paper presents valuable insights
into the understanding of the real-time data analysis frameworks and comparison of popular real-time data processing systems.
Keywords: Big Data, Batch/Stream Processing, Hadoop, Spark, Storm, Samza, Flink.

—————————— ◆ ——————————

1 INTRODUCTION

eal-time data analytics is the analysis of data as soon as
that data becomes available. In other words, users get
insights or can draw conclusions immediately or very

rapidly after the data enters their system. It’s also known
as dynamic analysis, real-time analysis, real-time data integra-
tion and real-time intelligence [2], [8], [10], [20] and [25].

Real-time analytics allows businesses to react without de-
lay. They can seize opportunities or prevent problems before
they happen. By comparison, batch-style analytics may take
hours or even days to yield results. Consequently, batch ana-
lytical applications often yield only “after the fact” insights
(lagging indicators). Business intelligence (BI) Insights from
real-time analytics can allow businesses to get ahead of the
curve [1], [3] and [12].

The real-time business intelligence is an approach to data
analytics that enables business users to get up-to-the-minute
data by directly accessing operational systems or feeding
business transactions into a real-time data warehouse and
business intelligence system. The technologies that can be
used to enable real-time BI include data virtualization, data
federation, enterprise information integration (EII), enterprise
application integration (EAI) and service-oriented architec-
tures (SOA). Complex event processing tools can be used to
analyze data streams in real time and either trigger automated
actions or alert workers to patterns and trends [3].

Real-time processing of big data mainly focuses on elec-
tricity, energy, smart city, intelligent transportation, and intel-
ligent medical fields. During the information processing it
needs to be able to make quick decisions, and feedback rele-
vant instructions to the sensing terminal input within a very
short time delay [19], [23] and [25].

Analyzing large data sets requires significant compute ca-
pacity that can vary in size based on the amount of input data
and the type of analysis [16] and [18]. In addition to some sys-
tems handle data in batches only mode, while other systems
process data in a streaming mode as it flows into the system
and others can handle data in a combination of tow-a mixed
processing mode [8], [10] and [25].

Processing frameworks and processing engines are re-
sponsible for computing over data in a data system. While
there is no authoritative definition setting apart "engines" from
"frameworks", it is sometimes useful to define the former as
the actual component responsible for operating on data and
the latter as a set of components designed to do the same. For
instance, Apache Hadoop can be considered a processing
framework with MapReduce as its default processing engine.
Engines and frameworks can often be swapped out or used in
tandem. For instance, Apache Spark, another framework, can
hook into Hadoop to replace MapReduce. This interoperabil-
ity between components is one reason that big data systems
have great flexibility [6], [10], [14] and [15].

Therefore, the research of real-time data analysis has a
great application prospect and research value. Because of the
real-time analytics of data processing framework is one of the
essential components of a big data analytics.

This paper is organized as follows: Section 2 in this paper,
examines the related work of real-time data analytics. In sec-
tion 3, the real-time data analytics systems are discussed. In
addition, other real-time data analysis tools are summarized in
section 4. In section 5, comparison of popular real-time data
processing systems. Finally, conclusion and directions for fu-
ture work are reported in section 6.

2 RELATED WORK

Recent years, many experts and scholars have made a lot of
research on real-time analytics [3], [4], [5] and [10].

Especially on real-time streaming data processing [9],
[11], [16], [17] and [22], in addition to many scholars’ re-
search on real-time big data processing is in full swing [2], [7],

[8], [20], and [25].
Many researchers have made studies on a framework for

real-time data processing [2], [5], [10], [13], [14], [17], [21] and
[25].

R

IJSER

http://www.ijser.org/
http://searchsoftwarequality.techtarget.com/definition/dynamic-analysis
http://searchdatamanagement.techtarget.com/definition/data-federation-technology
http://searchdatamanagement.techtarget.com/definition/data-federation-technology
http://searchsoa.techtarget.com/definition/EAI
http://searchsoa.techtarget.com/definition/service-oriented-architecture

1060

International Journal of Scientific & Engineering Research, Volume 10, Issue 10, October-2019
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

In [9], Gürcan and Berigel, provided a valuable insight on
real-time processing of big data streams, with its lifecycle,
tools and tasks and challenges. This paper initially revealed
the lifecycle of real-time big data processing, consisting of four
phases, that are data ingestion, data processing, analytical data
store, and analysis and reporting. Secondly, it described tools
and tasks of real-time big data processing. These tools are:
Flume, Kafka, Nifi, Storm, Spark Streaming, S4, Flink, Samza,
Hbase, Hive, Cassandra, Splunk, and Sap Hana. Finally, chal-
lenges of real-time big data processing were identified and
categorized.

In [13], Inoubli, et al., proposed streaming frameworks for
Big Data applications to store, analyze and process the contin-
uously captured data. Also discussed the challenges of Big
Data and presented an experimental evaluation and a com-
parative study of the most popular streaming platforms.

In [14], Inoubli, et al., surveyed popular frameworks for
large-scale data processing. This paper presented an overview
of the Big Data frameworks Hadoop, Spark, Storm and Flink.
Also, presented a categorization of these frameworks accord-
ing to some main features such as the used programming
model, the type of data sources, the supported programming
languages and whether the framework allows iterative pro-
cessing or not. Finally, conducted an extensive comparative
study of the above presented frameworks on a cluster of ma-
chines and highlighted best practices while using the studied
Big Data frameworks.

In [17], Khan, et al., proposed a framework for the dynam-
ic visualization of real time streaming big data, resilient to
both its volume and rate of change. Some of the different di-
rections explored include: (a) the efficient processing and con-
sumption of streaming data; (b) the automated detection of
relevant changes in the data stream, highlighting entities that
merit a detailed analysis; (c) the choice of the best idioms to
visualize big data, possibly leading to the development of new
visualization idioms; (d) real-time visualization changes.

In [21], Yadranjiaghdam et al., proposed a framework for

real-time analysis of Twitter data. This framework is designed to
collect, filter, and analyze streams of data and gives us an in-
sight to what is popular during a specific time and condition.
The framework consists of three main steps; data ingestion,
stream processing, and data visualization components with
the Apache Kafka messaging system that is used to perform
data ingestion task. Finally, conducted a case study on tweets

about the earthquake in Japan and the reactions of people around
the world with analysis on the time and origin of the tweets.

In [16], Jayanthi and Sumathi, focused on the challenges
that real-time stream processing solution addressed using ma-
chine learning. Also, this paper analyzed the traditional ana-
lytic tools to bridge the gap between data being generated and
data that can be analyzed effectively.

In [2], Anjos, et al., presented a framework consisting of
composable data-analysis services that can be combined to
address needs of specific applications. Also, this paper focused
on applications for small and medium-sized organizations, the
framework offered a flexible and lightweight approach that
allows these organizations to take advantage of Big Data anal-
ysis in the cloud infrastructures.

In [25], Zheng, et al., built a kind of real-time big data pro-
cessing (RTDP) architecture based on the cloud computing
technology and then proposed the four layers of the architec-
ture, and hierarchical computing model. Also, proposed a
multi-level storage model and the LMA-based application
deployment method to meet the real-time and heterogeneity
requirements of RTDP system. Then used DSMS, CEP, batch-
based MapReduce and other processing mode and FPGA,
GPU, CPU, ASIC technologies differently to processing the
data at the terminal of data collection. Finally, structured the
data and upload to the cloud server and MapReduce the data
combined with the powerful computing capabilities cloud
architecture.

3 REAL-TIME DATA ANALYTICS SYSTEMS

In this section, the real-time data analysis systems presented in
a table of comparison as shown in Table 1. As shown in Table
1, the comparison analysis of the frameworks, tools and tasks,
Issues, challenges and solutions, advantages and limitations
involve three domains, which are batch, stream and Hybrid
processing systems. In this respect, a total of 21 related works
have been analyzed, in which eight related works were identi-
fied within the domain of batch processing systems and an-
other seven in the stream processing systems domain. Howev-
er, six works were found in the Hybrid processing systems
domain. On the other side, this finding indicates eleven relat-
ed works interested in the frameworks and tasks for real-time
analytics and seven related works in challenges and solutions.
finally, three related works in advantages and limitations.

TABLE 1
REAL-TIME DATA ANAYTICS SYSTEMS

Aspects Batch-Only Processing Systems Stream-Only Processing Systems Hybrid Processing Systems Total

Frameworks, Tools,

and Tasks

In [8], Dugane & Raut, 2014. In [13], Inoubli, et al., 2018. In [14], Inoubli, et al., 2018.

11

In [4], Bifet, 2013. In [17], Khan, et al., 2017.

In [2], Khan, et al., 2015.
In [24], Zhang, et al., 2010. In [21], Yadranjiaghdam, et al.,

2017.
In [20], Babak, et al., 2017. In [3], Azvine, 2006. In [16], Jayanthi & Sumathi, 2016.

IJSER

http://www.ijser.org/

1061

International Journal of Scientific & Engineering Research, Volume 10, Issue 10, October-2019
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

Issues, Challenges,

and Solutions

In [7], Brock & Khan, 2017.
In [11], Hiraman, et al., 2018. In [25], Zheng, et al., 2015.

7 In [12], Gandhi & Sreedhar, 2015.

In [9], Gürcan & Berigel, 2018. In [23], Yuan, et al., 2012.
In [15], Jaseena, et al., 2014.

Advantages and

Limitations
In [1], Anjos, et al., 2018. In [22], Yang, et al., 2013. In [10], Gurusamy, et al., 2017. 3

Total 8 7 6 21

3.1 Batch Processing Systems

Batch processing is the processing of vast amounts of data sets

that is collected over a period of time and return the result at a

later time when the computation is completed. The dataset

easily consists of millions of records for a day and can be

stored in a variety of ways (file, record, etc.). An example of a

batch processing job is all of the transactions a financial firm

might submit over the course of a week. It can also be used in

payroll processes, line item invoices, and supply chain and

fulfillment.

Batch data processing is an extremely efficient way to pro-

cess large volume of data all at once. It also helps to reduce the

operational costs that businesses might spend on labor as it

doesn’t require specialized data entry clerks to support its

functioning. It can be used offline and gives managers com-

plete control as to when to start the processing, whether it be

overnight or at the end of a week or pay period.

3.1.1 Apache Hadoop

Apache Hadoop is a collection of open-source software for

reliable, scalable, distributed computing that facilitate using a

network of many computers to solve problems involving mas-

sive amounts of data and computation.

Apache Hadoop is a processing framework that exclusive-

ly provides batch processing. It can be used for the distributed

storage and processing of large data sets across clusters of

computers using simple programming models. Batch pro-

cessing works well in situations where you don’t need real-

time analytics results, and when it is more important to pro-

cess large volumes of data to get more detailed insights than it

is to get fast analytics results. The base Apache Hadoop

framework is composed of the following modules:

1. Hadoop Common – contains libraries and utilities

needed by other Hadoop modules.

2. Hadoop Distributed File System (HDFS) – a distrib-

uted file system that stores data on commodity ma-

chines, providing very high aggregate bandwidth

across the cluster nodes.

3. Hadoop Yet Another Resource Negotiator (YARN) –

a platform responsible for managing computing re-

sources in clusters and using them for scheduling us-

ers' applications.

4. Hadoop MapReduce – an implementation of the

MapReduce programming model for large-scale data

processing. MapReduce is Hadoop's native batch pro-

cessing engine. It’s the best framework for processing

data in batches.

Batch Processing Model:

The processing functionality of Hadoop comes from the

MapReduce engine. MapReduce's processing technique fol-

lows the map, shuffle and reduce algorithm using key-value

pairs.

The basic procedure involves:

➢ Reading the dataset from the HDFS file system.

➢ Dividing the dataset into chunks and distributed among

the available nodes.

➢ Applying the computation on each node to the subset of

data (the intermediate results are written back to HDFS).

➢ Redistributing the intermediate results to group by key.

➢ "Reducing" the value of each key by summarizing and

combining the results calculated by the individual nodes.

➢ Write the calculated final results back to HDFS.

Figure 1. The Framework of the MapReduce Model [24]

3.2 Stream Processing Systems

Stream processing is computing over data and produce the

results strictly within certain time constrains as data enter the

system and quickly detect conditions within a small time peri-

od from the time of receiving the data. The detection time pe-

riod may vary from a few milliseconds to minutes. This re-

quires a different processing model than the batch processing

paradigm. Stream processing is also known as real-time ana-

lytics, streaming analytics, complex event processing, real-

time streaming analytics, and event processing. Stream pro-

cessing is a good fit for data where you must respond to

changes or spikes and where you’re interested in trends over

time.

IJSER

http://www.ijser.org/

1062

International Journal of Scientific & Engineering Research, Volume 10, Issue 10, October-2019
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

3.2.1 Apache Storm

Apache storm is a free and open-source distributed real-time

computational system for processing data streams. Storm fo-

cuses on extremely low latency and it can handle very large

quantities of data with and deliver results with less latency

than other solutions so it's considered one of the best options

for workloads that require near real-time processing.

Storm has many use cases: real-time analytics, online ma-

chine learning, continuous computation, distributed RPC,

ETL, and more. Storm is fast: a benchmark clocked it at over a

million tuples processed per second per node. It is scalable,

fault-tolerant, guarantees your data will be processed, and is

easy to set up and operate.

Storm Processing Model:

Storm integrates with the queueing and database technol-

ogies you already use. Stream processing works by orchestrat-

ing DAGs (Directed Acyclic Graphs) in a framework it calls

topologies. A Storm topology consumes streams of data and

processes those streams in arbitrarily complex ways, reparti-

tioning the streams between each stage of the computation

however needed. These topologies describe the various trans-

formations or steps that will be taken on each incoming piece

of data as it enters the system.

The topologies are composed of:

➢ Streams: Conventional data streams. This is unbounded

data that is continuously arriving at the system.

➢ Spouts: Sources of data streams at the edge of the to-

pology. These can be APIs, queues, etc. that produce da-

ta to be operated on.

➢ Bolts: Bolts represent a processing step that consumes

streams, applies an operation to them, and outputs the

result as a stream. Bolts are connected to each of the

spouts and then connect to each other to arrange all of

the necessary processing. At the end of the topology, fi-

nal bolt output may be used as an input for a connected

system.

3.2.2 Apache Samza

Apache Samza is an open-source distributed near-realtime,

asynchronous computational framework for stream pro-

cessing. It’s based on Apache Kafka and YARN. It provides a

simple callback-based API that’s similar to MapReduce, and it

includes snapshot management and fault tolerance in a dura-

ble and scalable way.

Samza is designed specifically to take advantage of Kaf-

ka's unique architecture and guarantees. It uses Kafka to pro-

vide fault tolerance, buffering, and state storage. Samza uses

YARN for resource negotiation. This means that by default, a

Hadoop cluster is required (at least HDFS and YARN), but it

also means that Samza can rely on the rich features built into

YARN.

Samza allows you to build stateful applications that pro-

cess data in real-time from multiple sources including Apache

Kafka. Battle-tested at scale, it supports flexible deployment

options to run on YARN or as a standalone library.

Figure 2. The Framework of the Apache Samza Model [9]

Samza Processing Model:

Samza relies on Kafka's semantics to define the way that

streams are handled. Kafka uses the following concepts when

dealing with data:

➢ Topics: Each stream of data entering a Kafka system

is called a topic. A topic is basically a stream of related

information that consumers can subscribe to.

➢ Partitions: In order to distribute a topic among nodes,

Kafka divides the incoming messages into partitions.

The partition divisions are based on a key such that

each message with the same key is guaranteed to be

sent to the same partition. Partitions have guaranteed

to order.

➢ Brokers: The individual nodes that make up a Kafka

cluster are called brokers.

➢ Producer: Any component writing to a Kafka topic is

called a producer. The producer provides the key that

is used to partition a topic.

➢ Consumers: Consumers are any component that

reads from a Kafka topic. Consumers are responsible

for maintaining information about their own offset, so

that they are aware of which records have been pro-

cessed if a failure occurs.

3.3 Hybrid Processing Systems (Batch and Stream
Processing)

There are some processing systems can handle both batch and

stream frameworks. These frameworks simplify diverse pro-

cessing requirements by allowing the same or related compo-

nents and APIs to be used for both types of data.

3.3.1 Apache Spark

Apache Spark is an open-source distributed general-purpose

cluster-computing framework that is a unified analytics engine

for large-scale data processing and the next generation batch

processing framework with stream processing capabilities.

IJSER

http://www.ijser.org/

1063

International Journal of Scientific & Engineering Research, Volume 10, Issue 10, October-2019
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

Apache Spark achieves high performance for both batch

processing workloads by offering full in-memory computation

and processing optimization and streaming data, using a state-

of-the-art DAG scheduler, a query optimizer, and a physical

execution engine.

Spark can run as a standalone or on top of Hadoop YARN,

where it can read data directly from HDFS. In addition to its

in-memory data processing engine that can do ETL, analytics,

machine learning and graph processing on large volumes of

data at rest (batch processing) or in motion (streaming pro-

cessing) with rich concise high-level APIs for the program-

ming languages: Scala, Python, Java, R, and SQL.

Figure 3. The Spark Platform [14]

3.3.2 Apache Flink

Apache Flink is an open-source stream-processing framework

and distributed processing engine for stateful computations

over unbounded and bounded data streams. Flink has been

designed to run in all common cluster environments, perform

computations at in-memory speed and at any scale.

The core of Apache Flink is a distributed streaming data-

flow engine written in Java, Scala, Python and SQL and are

automatically compiled and optimized into dataflow pro-

grams that are executed in a cluster or cloud environment.

Flink provides a high-throughput, low-latency streaming

engine as well as support for event-time processing and state

management. Flink applications are fault-tolerant in the event

of machine failure and support exactly-once semantics.

Apache Flink is an excellent choice to develop and run

many different types of applications due to its extensive fea-

tures set. Flink’s features include support for stream and batch

processing, sophisticated state management, event-time pro-

cessing semantics, and exactly-once consistency guarantees for

state. Moreover, Flink can be deployed on various resource

providers such as YARN, Apache Mesos, and Kubernetes but

also as stand-alone cluster on bare-metal hardware. Config-

ured for high availability, Flink does not have a single point of

failure. Flink has been proven to scale to thousands of cores

and terabytes of application state, delivers high throughput

and low latency, and powers some of the world’s most de-

manding stream processing applications.

Figure 4. The Flink Platform [2]

4 OTHER REAL-TIME DATA ANALYSIS TOOLS

4.1. Apache Flume is a distributed, reliable, and available

software for efficiently collecting log data present in log

files from web servers, aggregating it in HDFS for analy-

sis, and moving large amounts of log data into HDFS. It

has a simple and flexible architecture based on streaming

data flows. It is robust and fault tolerant with tunable reli-

ability mechanisms and many failover and recovery

mechanisms. It uses a simple extensible data model that

allows for online analytic application.

4.2. Apache Kafka is an open-source distributed stream-

processing software platform that is used publish and

subscribe to streams of records. It is horizontally scalable,

fault-tolerant, wicked fast, and runs in production in

thousands of companies. Kafka is designed to allow your

apps to process records as they occur.

4.3. Apache S4 is a general-purpose, near real-time, distrib-

uted, decentralized, scalable, event-driven, modular plat-

form that allows programmers to easily implement appli-

cations for processing continuous unbounded streams of

data. S4 has a decentralized and symmetric architecture

which all the nodes in a cluster are identical, different to

the classic master-nodes architecture. S4 employs

ZooKeeper as the communication layer to coordinate the

nodes within the cluster.

4.4. Apache NiFi is an open-source software project from the

Apache Software Foundation designed to automate the

flow of data between software systems. It is based on the

"Niagara Files" software previously developed by the

NSA. Apache NiFi supports powerful and scalable di-

rected graphs of data routing, transformation, and system

mediation logic.

4.5. Apache Hive is a data warehouse software project built

on top of Apache Hadoop for providing data query and

analysis. It's facilitates reading, writing, and managing

large datasets residing in distributed storage using SQL.

Structure can be projected onto data already in storage. A

command line tool and JDBC driver are provided to con-

nect users to Hive.

IJSER

http://www.ijser.org/

1064

International Journal of Scientific & Engineering Research, Volume 10, Issue 10, October-2019
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

4.6. Apache Sqoop is a command-line interface application

designed for efficiently transferring bulk data between

Apache Hadoop and structured datastores such as rela-

tional databases.

4.7. Apache HBase is the Hadoop database, a distributed,

scalable, big data store. It is used when you need random,

realtime read/write access to your Big Data. This project's

goal is the hosting of very large tables -- billions of rows X

millions of columns -- atop clusters of commodity hard-

ware. HBase is an open-source non-relational distributed

database modeled after Google's Bigtable and written in

Java.

4.8. HStreaming is an analytics platform built on top of Ha-

doop and MapReduce. The architecture of HStreaming

consists of two components: data acquisition and data an-

alytics. The data acquisition component is able to collect

data in near real-time, and has ETL capabilities, while the

analytics component allows to analyze unstructured and

structured data on HDFS in a real-time fashion.

4.9. Apache Impala is a modern, open source massively par-

allel processing, distributed SQL query engine for data

stored in a computer cluster running Apache Hadoop.

5 COMPARISON OF REAL-TIME DATA PROCESSING

SYSTEMS

The frameworks for real-time data analysis presented above
are compared according to several features (see Table 2) in-
cluding: data format, types of data sources, Architecture, spec-
ified used for RTDP, processing model, programming model,
supported languages, cluster manager, integration/query,
Comments, latency, messaging capacities, iterative computa-
tion, interactive mode, auto-parallelization, data partitioning
and data transport.

TABLE 2
COMPARISON OF POPULAR REAL-TIME DATA PROCESSING

SYSTEMS

Aspects Hadoop Storm Samza Spark Flink

Data Format Key-value Key-value, Tuples Events, Messages Key-value, RDD
Key-value,

Data stream

Data Sources
HDFS, YARN and

MapReduce

HDFS, HBase and

Kafka
Kafka

HDFS, DBMS and

Kafka

Kafka, Kinesis, message

queus, socket streams

and files

Architecture Master/Slaves Peer Peer Master/Slaves Publish/Subscribe

Specified Used
Data ingestion,

Single-event

Stream & Complex

event processing

Event stream

processing

Event stream

processing

Stream & Complex

event processing

Processing Model Batch Stream Stream Batch and Stream Batch and Stream

Programming Model Map and Reduce Topology Map and Reduce
Transformation

and Action

Transformation, Action

Functions

Supported languages Java, Python and R
Java, Scala, Clojure,

Python, Ruby and C#

Java, Scala,

Python and Ruby

Java, Scala, Python

and R

Java, Scala, Python,

Ruby, R and Clojure

Primarily Written in Java Clojure Java, Scala Scala Java, Scala

Cluster Manager YARN Zookeeper or YARN YARN
Standalone, YARN

and Apache Mesos
Zookeeper

Integration/Query

(Streaming query)
Integration Integration

Integration and

Samza-SQL API

Integration and

Spark-SQL
Integration

Comments
Store large data in

HDFS

Suitable for real time

App.

Based on Hadoop

and Kafka

Gives several APIs

to develop

interactive App.

Extension of MapRe-

duce with Graph

methods

Latency More Seconds Sub-Second Few Seconds Sub-Second Sub-Second

Messaging Capacities At least once At least once Exactly once Exactly once Exactly once

Iterative Computation
Yes (By running multi-

ple Map-Reduce jobs)
Yes Yes Yes Yes

Interactive Mode No No No Yes No

Auto-Parallelization On demand Pipelined Processing On demand On demand Pipelined Processing

Data Partitioning Yes No Yes Yes No

Data Transport RPC RPC Kafka RPC RPC

IJSER

http://www.ijser.org/

1065

International Journal of Scientific & Engineering Research, Volume 10, Issue 10, October-2019
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

6 CONCLUSION

Real-time data analysis for computing over data and reduce the

results is undoubtedly a huge challenge. There are many solutions

to address big data analytic requirements. Most of this solution

use multiple systems to build a complete solution. Most of the

frameworks for real-time data analysis use multiple systems to

build a complete solution. this solution can help to meet the strict

business requirements in the most cost-optimized, performant,

and resilient way possible. The result is a flexible, big data archi-

tecture that is able to scale along with your business on the global

infrastructure. There are many options for real-time data pro-

cessing within a big data system.

First, for batch-only workloads that are processing large sets

of data and not time-sensitive, Hadoop is a good choice that is

great for MapReduce data analysis on huge amounts of data and

likely less expensive to implement than some other solutions.

Second, for stream-only workloads, Storm is probably the

best solution available for real-time processing. It’s able to handle

data with extremely low latency processing and has wide lan-

guage support. Samza integrates tightly with YARN and Kafka in

order to provide flexibility, easy multi-team usage, and straight-

forward replication and state management.

third, for hybrid processing systems, Spark is a good stream

processing solution for workloads that value throughput over

latency. It’s provided high-speed batch processing, micro-batch

processing, wide support, integrated libraries and tooling, and

flexible integrations. Flink is currently a unique option in the pro-

cessing framework world. It’s provided true stream processing

with batch processing support, low latency processing, high

throughput and real entry-by-entry processing but is still in the

early days of adoption.

Finally, the best fit for your situation will depend heavily

upon the state of the data to process, how time-bound your re-

quirements are, and what kind of results you are interested in.

REFERENCES

[1] J. Anjos, K. Matteussi, P. Souza, C. Geyer, A. Silva Veith, G. Fedak, J.

Barbosa, “Enabling Strategies for Big Data Analytics in Hybrid Infra-

structures”, International Conference on High Performance Compu-

ting & Simulation (HPCS), Orléans, France, (2018), 869-876.

[2] J. Anjos, M. Assuncao, J. Bez, C. Geyer, E. P. Freitas, A. Carissimi, J.

Costa, G. Fedak, F. Freitag, V. Markl, P. Fergus, R. Pereira, “An Appli-

cation Framework for Real Time Big Data Analysis on Heterogeneous cloud

Environment”, IEEE International Conference on Computer and In-

formation Technology, Liverpool, United Kingdom (2015), 199-206.

[3] B. Azvine, Z. Cui, D. Nauck, B. Majeed, “Real Time Business Intelli-

gence for the Adaptive Enterprise”, International Conference on E-

Commerce Technology, San Francisco, CA, USA, (2006), 1-12.

[4] A. Bifet, “Mining Big Data in Real Time”, International Journal of In-

formatica, 37 (2013), 15-20.

[5] A. Block, B. Brandenburg, J. H. Anderson, S. Quint, “An Adaptive

Framework for Multiprocessor Real-Time Systems”, Euromicro Confer-

ence on Real-Time Systems, Prague, Czech Republic, (2008), 1-12.

[6] K. Boukhelfa, F. Belala, “Towards a Formalization of Real-Time Patterns-

Based Designs”, International Conference on IFIP Advances in Infor-

mation and Communication Technology, (2015), 625-636.

[7] V. Brock, H. Khan, “Big data analytics: does organizational factor matters

impact technology acceptance?”, Journal of Big Data, (2017), 4-21.

[8] R. Dugane, A. Raut, “A Survey on Big Data in Real Time”, International

Journal on Recent and Innovation Trend in Computing and Commu-

nication, 2 (4) (2014), 794-797.

[9] F. Gürcan, M. Berigel, “Real-Time Processing of Big Data Streams:

Lifecycle, Tools, Tasks, and Challenges”, IEEE 2nd International

Symposium on Multidisciplinary Studies and Innovative Technolo-

gies (ISMSIT), (2018), 1-6.

[10] V. Gurusamy, S. Kannan, K. Nandhini, “The Real Time Big Data Pro-

cessing Framework: Advantages and Limitations”, International Journal

of Computer Sciences and Engineering, 5 (12) (2017), 305-311.

[11] B. Hiraman, C. Viresh M., K. Abhijeet C., “A Study of Apache Kafka in

Big Data Stream Processing”, International Conference on Information,

Communication, Engineering and Technology, India, (2018), 1-3.

[12] K. Indra Gandhi, Sri. C. Sreedhar, “Survey on Big Data: Management

and Challenges”, International Journal of Computer Trends and Tech-

nology (IJCTT), 20 (1) (2015), 33-36.

[13] W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, E. Nguifo, “A Compar-

ative Study on Streaming Frameworks for Big Data”, 44th International

Conference on Very Large Data Bases: Workshop LADaS - Latin

American Data Science, (2018), Rio de Janeiro, Brazil.1-8.

[14] W. Inoubli, S. Aridhi, H. Mezni, M. Maddauri, E. M. Nguifo, “An

Experimental Survey on Big Data Frameworks”, International Journal of

Future Generation Computer Systems-Elsevier, (2018), 1-21.

[15] K. Jaseena, J. David, “Issues, Challenges, and Solutions: Big Data Min-

ing”, International Journal of Computer Science & Information Tech-

nology, (2014), 131-140.

[16] D. Jayanthi, G. Sumathi, “A Framework for Real-time Streaming Analyt-

ics using Machine Learning Approach”, International Journal of Ad-

vanced Computer Technology, (2016), 85-91.

[17] A. Khan, D. Gonçalves, D. C. Leão, “Towards an Adaptive Framework

for Real-Time Visualization of Streaming Big Data”, Eurographics Inter-

national Conference on Visualization (EuroVis), Posters Track,

(2017), 1-3.

[18] V. Ta, C. Liu, G. Wandile, “Big Data Stream Computing in Healthcare

Real-Time Analytics”, IEEE International Conference on Cloud Com-

puting and Big Data Analysis, Chengdu, China, (2016).

[19] R. Wagensveld, U. Margull, “Experiences with HPX on embedded real-

time systems”, International Conference on Applied Electronics, Pil-

sen, Czech Republic, (2017), 1-6.

[20] B. Yadranjiaghdam, N. Pool, N. Tabrizi, “A Survey on Real-Time Big

Data Analytics: Applications and Tools”, IEEE International Conference

on Computational Science and Computational Intelligence, Green-

ville, NC, USA (2016), 404-409.

[21] B. Yadranjiaghdam, S. Yasrobi, N. Tabrizi, “Developing a Real-Time

Data Analytics Framework for Twitter Streaming Data”, IEEE 6th Inter-

national Congress on Big Data, (2017), 329- 336.

[22] W. Yang, X. Liu, L. Zhang, and L. T. Yang, “Big Data real-time pro-

cessing based on Storm”, IEEE 12th International Conference on Trust,

Security and Privacy in Computing and Communications, (2013),

1784–1787.

[23] Q. Yuan, Z. Feng, F. Jun, M. Qiang, “Real-time processing for high speed

data stream over large scale data”, Chinese Journal of Computers, 35 (3)

(2012), 477-490.

[24] F. Zhang, J. Cao, X. Song, H. Cai, C. Wu, “An Adaptive MapReduce

Framework for Real Time Applications”, IEEE 9th International Confer-

ence on Grid and Cloud Computing, Nanjing, China, (2010), 1-6.

[25] Z. Zheng, P. Wang, J. Liu, S. Sun, “Real-Time Big Data Processing

Framework: Challenges and Solutions”, International Journal of Applied

Mathematics & Information Sciences, 9 (6) (2015), 3169-3190.

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10920
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10920
https://www.researchgate.net/journal/0254-4164_Chinese_Journal_of_Computers

